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MOLAR MOMENTUM AND HEAT TRANSFER 

V. F. Potemkin UDC 532.526 

Universal relations governing the molar transfer of momentum and heat are derived 
on the basis of a hypothesis about the dependence of the boundaries of the molar 
transfer region on the flow structure and with the use of a special mathematical 
transformation. 

Molar transfer, i.e., the transfer of momentum, heat, mass, and other entities by finite 
masses of a continuum, is commonplace in nature and technology. The well-known molar trans- 
fer relations contain empirical constants and are not universal [i]. 

We now attempt to establish universal relations for steady axisymmetrical and plane molar 
momentum- and heat-transfer processes in the turbulent core of a turbulent boundary layer. 

It has been shown [2] that the following generalized relation holds for molar momentum 
transfer in a turbulent boundary layer with zero pressure gradient: 

dO 
--= 1, (1) 

where U = (u +- l)/(u~-- I), R = in y+/in ~+. 

Supervisory Council, State Committee of the USSR on Inventions and Discoveries. Trans- 
lated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 3, pp. 441-448, September, 1981. 
Original article submitted June 23, 1980. 

960 0022-0841/81/4103-0960507.50 �9 1982 Plenum Publishing Corporation 



Equation (i) has been obtained on the basis of the hypothesis of quantization of the 
turbulent boundary layer into average moles (eddies), where the domain of definition of the 
average longitudinal velocity u(x, y) is given as fallows: 

x ~ x ~ x ~  ~o, a(X)~>v~>l,(x)> 0 (2) 

Here x is the longitudinal coordinate measured along the bounding solid surface (wall), y is 
the transverse coordinate measured from the wall, l,(x) is a transverse space scale of the 
average mole (eddy) formed at the wall, and 8(x) is the boundary-layer thickness. 

It has also been proved that if the average longitudinal velocity u(x, y) with the do- 
main (2) is transformed to the dimensionless velocity U, which is a single-valued function 
of~one generalized variable R(x, y), for the purpose of obtaining a universal relation for 
U(R) in+the interval [R:, R2], expression (I) is valid. In this case R2 = i, and R1~in 
8~/in 8 . (RI = In 8~/in 8 + if the turbulent boundary layer does not contain a K~rmfin 
transition zone.) Here 8 + is the dimensionless thickness of the laminar sublayer. 

o 

We assume that the boundaries of the molar transfer domain in, for example, the turbulent 
core of a turbulent boundary layer depend on the structure of the flow; we specify this domain 
in the form 

x ~ x ~ x ~ O ,  ~(x)>~v>~6o(x)>o. (3) 
We speak of the boundary curve ~(x) as the upper boundary of the molar transfer domain, for 
example the thickness of the turbulent boundary layer, and we interpret So(X) as the lower 
boundary, in particular the thickness of the laminar sublayer. 

The domain (3) is far more general than (2); for example, the representation (3) obviates 
the need for additional knowledge of the structure of (2) and, hence, for specifying the scale 
of the average mole at the wall ~,. 

The universality of the longitudinal-velocity and temperature profiles in the molecular 
transfer domain, for example in the laminar sublayer of a turbulent boundary layer, is 
governed by the universality in that domain of Newton's law of molecular momentum transfer 

du+ - -  1 ( 4 )  
dy § 

and the universality of t h e  Fourier law of molecular heat transfer 

d~+ 1. (5) 
d (Pr  g+) 

If the profiles of the average longitudinal velocity u(x, y) and the average thermodynamic 
temperature T(x, y) in the molar transfer zone are also universal, then they must be described 
by their own universal laws, but now for the molar transfer of momentum and heat. 

The indicated laws will be the only possible generalized relations for u(x, y) and T(x, 
y) in the domain (3). 

Using the previously described [2] special transformation of a function of two variables 
into a generalized single-valued function of one generalized variable, we obtain generalized 
relations for the molar momentum- and heat-transfer process under the condition (du+/dy+)o > 0: 

dU _ 1, ( 6 )  

dR 
u = ~ ,  (7) 

d O  _ 1, ( 8 )  

dR 

0 = R, (9) 

where R = In(y/8o)/In(8/8o); U = (u--Uo)/(u 8 --Uo); @ = (T -- To) /T8 -- To) , uo = u(x, So(x)) 
u 8 = u(x, 8(x)); To = T(x, 8o(x)); T 8 = T(x, 8(x)). Note that in the variables u+,@ -+ y+ 
we have R = in(y+/8~)/in(8+/8~), U = (u +- u~)/(u~- u~), 0 = (@+--~)/(~--~). ' 

Expressions (6)-(9) are rigorously defined in the interval R E [0, i] if the boundary 
curve 6o(X) directly separates the molecular and molar transfer zones in, for example, a 
turbulent boundary layer without a Karman transition zone. 
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Fig. i. Distribution of the generalized dimensionless veloc- 
ity U(R) for (9/u~) (du6/dx) = 9.42.10 -6 and various values of 
the average diameter d and volume concentration c of poly- 
styrene beads. I) Relation (7); 2) d = 0.32 mm, c = 0.2%; 3) 
0.32 mm, 0.44%; 4) 0.82 mm, 0.2%. 

Fig. 2. Distribution of the generalized dimensionless temper- 
ature O(R) for a turbulent water flow. i) Relation (9). 

In the case where the molar and molecular transfer regions are separated by a mixed- 
transfer transition region, the interval of R in which relations (6)-(9) are valid with suf- 
ficient accuracy is narrowed to [R,, I], where RI > 0. The value of RI depends on the width 
of the transition zone 6k(X) , because RI = in(6K/6O)/in(6/~o). Here 6o(x) < ~K(X) < ~(x). 

In Fig. i, as an example, the universal relation (7) is compared with experimental data 
from an investigation [3] of a disperse turbulent flow with negative pressure gradients. The 
flow was made disperse by injecting spherical polystyrene beads of various diameters into it 
at various volume concentrations. Satisfactory correlation is obtained between the experi- 
mental data and expression (7). 

In Fig. 2 the experimental data of [4] are compared with expression (9). The tempera- 
ture profiles in the l~minar sublayer and wall zone of the turbulent core were measured with 
high accuracy in [4] by means of a special microthermocouple. The satisfactory agreement of 
the experimental data with the theoretical relation (9) is obvious. 

The molar transfer equations (6) and (8) are analogs of the molecular transfer equations 
(4) and (5), but (6) and (8) are formally unrelated to (4) and (5) and have greater univer- 
sality. For example, it has been shown [2] that in molar transfer on a rough surface with 
degeneracy of Eq. (4), expression (6) is still valid. And in this case, rather than the 
thickness of the laminar sublayer as the limit of validity of Eq. (4), it is necessary in 
Eq. (6) to use the distance from the wall where the turbulent moles (eddies) "forget" the 
cause of their origin (roughness) and "behave" as if they literally originated at the sub- 
layer boundary ~o(x) specified by the relation in~/(u o -- i) = i. 

We rewrite Eq. (7), separating out the term that does not depend on the instantaneous 
values of y: 

= ~6, (i0) 

where ~ = in (y+/ ~) / (u+ -- u~), ~6 = in(~+/6~)/(u~ -- u~). Substituting the value of ~ into 
(i0), we obtain 

u+ = 1 in (v+lS~) + u~. ( l l )  
~8  

From the integral of Eq. (i), which has been shown [2] to be valid for a zero pressure 
gradient, we obtain analogously 

= ~8, (12) 
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1 
u + =  . l n y + + l ,  ~ (13) 

where ~ = l~y+ / (u  + -  1), ~6 = lnS+/(u~ - 1). 

For a zero pressure gradient 

~ = ~ .  (14) 
+ + 

Thus, after simplifying expression (14) we obtain ~6 = inSo/( uo -- i), which corresponds to 
Eq. (12). Therefore, Eq. (i) is a special case of Eq. (6) and is valid under condition (14). 

By analogy with expressions (I0) and (ii), we write Eq. (9) in the form 

x = xs, (15) 

0 + =  1 l n ( y + / 6 ~ ) + ~  ' 
X8 (16) 

where X in(y+16+)l(~ + ~+), X~ in(6+16+)I(@~ + . . . .  ~o)  �9 

A comparison of (ii) and (16) shows that in the molar transfer domain, if the critical 
functions X6 and ~ are equal, the profiles of the dimensionless temperature~ + --~+ and 
velocity u +- u + coincide: 

0+--~ _ ~8 (17) 

u + -- u +  X ~  

We prove that in the first approximation 

~ -- 1. (18) 
X~ 

+ + + + 
Thus, inasmuch as u o = ~o and, for Pr = I, @ o = 8o, an inspect$on of expression (17) reveals 
that in the case @~ = u~ Eq. (18) holds. The condition ~ = us, on the other hand, is known 
as the quantitative form of representation of the Reynolds analogy [5]. 

It is evident from expression (5) that with an increase in Pr in the explicit form of 
the right-hand side of expression (16) only the value9 + read for the function~- increases. 
Consequently, for Pr > 1 relation (18) is still valid in the first approximation. 

In [6] the following equation has been deduced from Eq. (4) and its integral: 

9+ du+ -- = u +, (19) 
@+ 

which the author interprets as follows: "Laminar flow can be represented by a superposition 
of eddies rolling along the wall with a dimensionless angular velocity du+/dy + and with a 
translational velocity at point y+ equal to the flow velocity u+. '' 

From the turbulent-core equations (6) and (7) we also formally deduce the rolling equa- 
tion 

dU 
R = u, (20)  

dR 

analogous to (19). Here R is the generalized dimensionless distance from the boundary of the 
laminar sublayer 6o, and dU/dR is the generalized dimensionless angular velocity. 

Equation (20) describes the superposition of average turbulent eddies rolling along the 
boundary of the laminar sublayer. However, it can also be regarded as a superposition of 
average turbulent eddies, each of which rolls over its own surface situated at a distance y+ 
from the wall and moving with the velocity given by expression (ll). The rolling of the 
eddies is treated essentially as inherent in the reference system. Then at a dimensionless 
distance from the indicated surface Z + equal to the dimensionless eddy radius, the eddy has 
a dimensionless rolling translational velocity u~: 

+ 
Here ~l is the dimensionless angular velocity of the average eddy. 
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Since the eddy superpositions given by Eqs. (20) and (21) must be equivalent, we make 
use of the fact that I/y~l to obtain from (ll) 

+ + I + 
U~ = u + ((Y§ ~-/+)/6~) - -  u + (y /60 ) = (22)  

~ y +  . , 

A comparison of expressions (22) and (21) shows that 

From Eq. (ii) we obtain 

l (23) 

Now 

du + 1 

dy + T~y+ 

(24) 

and expression (21) acquires the form 

du + (25)  
@+ 

l+ du+ = u~ (26) 
dy + 

Equation (26), unlike (20), is the physical as well as the formal analog of Eq. (19). 

Inasmuch as the average eddy of width l + must completely transfer momentum flux density 
across the surface over which it is rolling, we have 

u + = V ~ ,  (27)  

where T+(x, y) = ~(x, y)/Tw(X). Then the expression for the transverse eddy dimension 
(radius) can be written in the form 

1 + = ~ y +  V ' ~ .  (2 8 ) 

On the basis of condition (14) and expression (12), 

l + = ~6y + V ~ - =  ~y*  ~ .  (29)  

As y+ § 1 t h e  q u a n t i t y  T + + 1 a n d ,  g e n e r a l i z i n g  e x p r e s s i o n  (29)  t o  t h e  l a m i n a r  s u b l a y e r ,  we 
i n f e r  t h a t  

l+ = T Y  +, (30)  

where automatically, taking the integral of Eq. (4) into account, we have @ = in y+/(y+ -- i)$ 
In the laminar sublayer the function ~ decreases from ~, = i at y+ = i to ~o = ~ at y+ = ~o' 

Expression (30)explains the basic nature of the Kline streaks [7]. When local fluid 
masses (moles) become densely clustered near the wall in the laminar sublayer (where, marked 
with a dye, they form a streak), the radius of the mole in expression (30) and, hence, the 
structure of the streak change very slightly in expression (30) as the masses move away from 
the surface, because y+ increases and, simultaneously, ~ decreases. 

The moles io the laminar sublayer are ostensibly indistinguishable. Howeverj when 
attains a value ~o equal to ~6, the scale l + Just after the boundary of the laminar sublayer, 
according to (29), begins to grow rapidly, whereupon the local fluid masses in the turbulent 
core become individualized and the Kline streaks break up. 

If the main flow is supersonic, the moles (eddies) emerging from the laminar sublayer 
are formed at the wall, where the Math number M w = 0, and so it follows from the assumption 
of their stability against dissolution during rolling along the boundary of the laminar sub- 
layer that Eqs. (6) and (7) can be generalized to the case of molar transfer in supersonic 

flow. 

As an example, Fig. 3 shows a plot of the integral of Eq. (1) 
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1 
Fig. 3. Distribution of the generalized 
dimensionless velocity U(R) in supersonic 
turbulent flow. i) Relation (31). 

6= ~ (31) 

and the experimental data of an investigation [8] of the singular aspects of a turbulent bound- 
ary layer for a freestream Mach number of the order of 9. Satisfactory agreement is witnessed 
between the experimenta ! data and the theoretical relation (31) beginning with R ~ 0.6-0.7. 
We note that the value R - 0.6 in the indicated experimental work corresponds to y+ - I0, 
i.e., to the beginning of the turbulent core. 

The generalized relations derived here for molar momentum and heat transfer in the 
turbulent core exhibit certain laws governing a turbulent boundary layer and can be used to 
simplify the calculations. 

NOTATION 

u, average longitudinal velocity, m/see; T, average temperature, ~ Tw, wall tempera- 
ture, ~ v, kinematic viscosity coefficient, m2/sec; 0, density, kg/mS; Cp, specific heat, 
J/kg.K; 3, tangential stress_N/m=; ~w, tangential stress at wall, N/m=; qw, specific heat 
flux at wall, W/m=; u, = ~Tw/0, dynamic velocity, m/see; ~ , = qw/pCpU,, characteristic tem- 
perature, ~ ~, thickness of boundary layer, m; ~o, thickness of laminar sublayer, m; l, = 
~/u,, transverse space scale of average mole at wall, m; y+ = y/l,, dimensionless coordinate; 
u + = u/u,, dimensionless velocity; ~ + = (Tw -- T)/~*, dimensionless temperature; 3 + = T/~w, 
dimensionless tangential stress; R = In (y+/6~)/in (~+/6~), generalized dimensionless co- 
ordinate; U = (u +- u~)/(u~-- u~), generalized dimensionless velociSy; Pr, erandtl number. 
Indices: *, flow parameters evaluated at y+ = i; ~, parameters at y = ~+; 0, parameters at 
y+ = 6~; w, parameters at wall. 
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